google-site-verification=sBX3-TUX6SMIJ-LJbjp62bcu4TD2AgZhVB9ELvCVfg4 The 10 most important things to know about canine hip dysplasia.

Cape Fear Cane Corso

The 10 most important things to know about canine hip dysplasia.

December 24, 2018

 

This article is copied from The Institute of Canine Biology

 

 

 

Hip dysplasia is a hot topic in dogs, if it's possible to stay "hot" for 50 years. Researchers have been working hard for decades looking for solutions, and breeders have been doing their best to reduce the risk of producing affected puppies. But still the problem remains.

 

There are some simple things we could do to reduce the incidence of hip dysplasia now if we understand a few basic things. Here are the 10 most important things you need to know.

1) All puppies are born with perfectly normal hips
Hip dysplasia is not a congenital defect; it is not present at birth. Multiple studies have demonstrated that all normal puppies are born with "perfect" hips; that is, they are "normal" for a newborn with no signs of dysplasia. The structures of the hip joint are cartilage at birth and only become bone as the puppy grows. If a puppy is going to develop hip dysplasia, the process begins shortly after birth.

 

 

 

This is the hip joint of a 1 day old puppy. The cartilage tissue does not show up on an x-ray until the minerals are deposited that form bone. Proper development of the joint depends on maintaining the proper fit between the head of the femur and the socket (acetabulum).

"The hip joints of all dogs are normal at birth. The joints continue to develop normally as long as full congruity is maintained between the acetabulum and the femoral head... The acetabular rims are stimulated to grow by mild traction applied by the joint capsule and gluteal muscles attached along their dorsal borders, and from pressure by the femoral heads upon the articular surfaces... The morphologic characteristics of the complex hip structure show that biomechanical behavior is the prime influence in the growth of this joint." (Riser 1985)
 

 

 

2) The genes that cause hip dysplasia remain a mystery
Hip dysplasia tends to be more common in some breeds than others and in some lines than others, which indicates that there is a genetic component to the disorder. However, scientists have been looking for genes that are responsible for the development of hip dysplasia in dogs for decades without success.

​Genes that are associated with hip dysplasia have been identified in some breeds, but they are breed-specific; that is, the assortment of genes is different in every breed. (For example, see studies on the German Shepherd dog (Marschall & Distl 2007, Fells & Distl 2014, and Fels et al 2014), Bernese Mountain Dog (Pfahler & Distl 2012), and Labrador Retriever (Phavaphutanon et al 2008). Genes that could cause hip dysplasia have not been found in any breed.

It's unlikely that researchers are going to discover an easy genetic solution to the problem of hip dysplasia. It is a complex trait that is influenced by both genes and environment, and there is no simple solution just over the horizon. We should be able to improve genetic progress by using selection strategies that are as efficient and effective as possible such as estimated breeding values, EBVs. One great advantage of using EBVs is that the genes responsible for a trait don't need to be known; you need only a pedigree database and information about affected animals.

3) Environmental factors are also important
Although there is a genetic influence on hip dysplasia, the heritability of the trait is rather low. Many studies have shown that genetic variation accounts for only a modest fraction of the variation in hip scores, usually 15-40%. This means that some fraction of the variation in the quality of the hips is the result of non-genetic, or "environmental" influences. This is one reason why decades of strong selection has resulted in only modest reductions in hip dysplasia in some breeds. At the current rate of progress and selecting only by phenotype, it could take decades to achieve a meaningful reduction in the incidence of hip dysplasia (Lewis et al 2013).

Understanding the specific environmental factors that play a role in the development of hip dysplasia should allow us to reduce the number of animals affected by hip dysplasia even if the genetic basis is not yet understood. This would reduce significant pain and suffering as well as the expense and heartache endured by owners of an afflicted dog. There is no reason why we should not be taking active steps to do this now.

​The top three environmental factors that have been found to play a significant role in the develop of dysplastic hips are: a) joint laxity, b) weight, and c) exercise (see below).

 

 

 

4) Joint laxity is the primary cause of hip dysplasia
Puppies are born with perfect hips, and if the hips do not develop laxity the dog does not develop hip dysplasia (Riser 1985). Joint laxity occurs when the head of the femur does not fit snugly into the acetabulum. This could be the result of traumatic injury, overloading of the joint by weight, lack of muscle strength, or adductor forces (e.g., bringing the legs together). Joint laxity is the primary factor that predisposes a dog to the development of hip dysplasia.


​In dogs as well as many other vertebrates (including humans), the head of the femur in newborns is held securely in place by a strong ligament variously called the "round ligament" or "teres ligament".

One end of this ligament is attached to the head of the femur and the other end to the inner wall of the acetabulum (the cup-like socket on the pelvis).

You can see the teres ligament in this illustration (labeled "LIGAM. TERES"). 

 


If this ligament is damaged or severed, the femur will not be held tightly in the socket, which will cause the joint to feel "loose".

 

 


If the femoral head is not positioned properly in the socket, the forces on the hip will be abnormal. Instead of being distributed across the inner surface of the socket, the forces on the joint will be concentrated in a smaller area on the weaker rim of the acetabulum. The result will be damage to the rim of the socket when a load is placed on the hip joint.